Courses
The following power/energy courses are offered during Fall 2024:
- EECS 418: Power Electronics (Srinivasan)
- EECS 463: Power System Design and Operation (Dvorkin)
- EECS 534: Analysis of Electric Power Distribution Systems and Loads (Mathieu)
The following power/energy courses are expected to be offered during Winter 2025:
- EECS 419: Electric Machinery and Drives (Hofmann)
- EECS 598: Computational Power Systems (Dvorkin)
- EECS 598: Advanced Energy Storage (Song)
Course descriptions
Power Electronics – EECS 418
Meeting the future’s energy and environmental challenges will require the efficient conversion of energy. For example, renewable forms of energy must be integrated with the nation’s 60Hz AC electricity grid. Furthermore, hybrid electric vehicles require efficient energy conversion in order to improve their fuel economy over conventional vehicles. Power electronic circuits are a key component of these systems. Power electronic circuits are circuits that efficiently convert one form of electrical energy (e.g., AC, DC) into another.
This course will discuss the circuit topologies used to efficiently convert AC electrical power to DC, DC power from one voltage to another, and DC power to AC power. The components used in these circuits (e.g., diodes, transistors, capacitors, inductors) will also be covered in detail. A key aspect of power electronic circuits is the control algorithm used to achieve the desired behavior (e.g., output voltage regulation), and so control theory as it applies to these circuits will also be discussed.
Electric Machinery and Drives – EECS 419
In the struggle to address today’s energy and environmental challenges, many potential solutions require electro-mechanical energy conversion. Examples include electric propulsion drives for electric and hybrid electric vehicles, generators for wind turbines, and high-speed motor/alternators for flywheel energy storage systems. Each of these systems contains: an electric machine operating either as a motor, a generator, or both; a power electronic circuit which interfaces the machine to a power supply or an electrical system; and a controller which measures electrical and mechanical quantities and uses this information to control the power electronic circuitry.
In this course we will cover fundamental electromechanical, power electronic, and control theory in the context of electric drive systems. The capabilities and limitations of different types of electric machines (e.g., permanent magnet, induction) in various drive applications will be covered. MATLAB® Simulink® models will be used throughout the course to give students exposure to the dynamic behavior of these systems. Finally, a three-hour lab will be held each week to give the students hands-on experience with electric machines and drives.
Power System Design and Operation – EECS 463
The course will establish the basic principles of power system operation and control, under normal conditions and when faults occur. It will develop the models and tools necessary for analysing system behavior, and provide opportunities for using those tools in design processes. Optimal generation dispatch will be developed, and electricity market implementation issues addressed. The impact of renewable generation on power system operation will be considered.
Grid Integration of Alternative Energy Sources – EECS 498 [FLYER]
The course will present a variety of alternative energy sources, along with energy processing technologies that are required for power system connection. System integration issues will be addressed, with consideration given to impacts on current power system design philosophies and operating principles. Topics will be covered at a level suited to establishing a broad understanding of the various technologies, and of the associated system implications.
Design of Power Electronics – EECS 506
Transformative technologies in energy conversion will be smaller, cheaper, and more efficient. This class will address some advanced topics and techniques in power electronics and the craft of design through case studies. Topics may include switched capacitor circuits, resonant power conversion, magnetics, wireless power transfer, and instrumentation, among others. Advanced methods in the analysis, manufacturing, and control of power electronics will also be discussed. Design cases may include audio switching power amplifiers, photovoltaic switch capacitor circuits, resonant converters for wireless power transfer, and solid-state lighting drivers, among others.
Control and Modeling of Power Electronics – EECS 508
The course presents both the theoretical and practical modeling and control of power converters. Topics include small-signal models; digital and analog control; switched, sampled-data, and averaged models; large signal considerations; distributed power; and tools for computer modeling and simulation.
Power Semiconductor Devices – EECS 527 [FLYER]
Power devices are at the heart of all modern electronics, from the grid and renewable energy sources to fuel-efficient vehicles and mobile devices. In this course we will cover design and operating principles of semiconductor switches and rectifiers for discrete and integrated power electronics. Devices to be discussed include power MOSFET, IGBT, HEMT, thyristors, Schottky and PiN diodes, as well as new and emerging device architectures. We will look at power semiconductor substrates, device fabrication, packaging, and thermal modeling. Students will learn how to model power devices using commercial software and will do a group presentation on a topic of their choice.
Analysis of Electric Power Distribution Systems and Loads – EECS 534
This course covers the fundamentals of electric power distribution systems and electric loads. Most power system courses focus on analysis of transmission systems; however, with increased amounts of distributed generation (photovoltaics, small-scale wind), distributed storage, and controllable loads, it has become more and more important for researchers and power industry professionals to understand power distribution systems.
Power System Dynamics and Control – EECS 535
This course will introduce angle and voltage stability concepts and consider control strategies for improving dynamic performance. It will provide and overview of nonlinear dynamical systems, including geometrical properties of solutions, Lyapunov methods for approximating the region of attraction, and bifurcation.
Power Systems Markets and Optimization – EECS 536
This course covers the fundamentals of electric power system markets, and the optimization methods required to solve planning and operational problems including economic dispatch, optimal power flow, and unit commitment. The course will highlight recent advances including convex relaxations of the optimal power flow problem, and formulations/solutions to stochastic dispatch problems. Problems will be placed in the context of actual electricity markets, and new issues, such as incorporation of renewable resources and demand response into markets, will be covered. All students will conduct an individual research project.
Electromechanics – EECS 598 [FLYER]
It is imperative that society finds new solutions to the generation and usage of energy. Many of the current approaches to achieving these objectives (e.g., wind power, electric and hybrid electric vehicles, energy harvesting) require efficient conversion of mechanical energy into electrical form, and vice-versa. In this course we will discuss the analysis and design of electromechanical devices, with an emphasis on power and energy applications. Devices based upon mechanical forces generated by both electromagnetic fields and materials with electromechanical material properties will be considered. In addition to homework assignments, midterm, and final, the course will have a final design project. This project will be selected by the student, and will be approved by the instructor provided it has significant electromechanical design content.
Advanced Topics in Electric Drives – EECS 598 [FLYER]
In the struggle to address today’s energy and environmental challenges, many potential solutions require electro-mechanical energy conversion. Power electronic converters, and their associated control algorithms, allow the precise control of the torque/speed/position of rotating machines in challenging applications, such as high-performance electric vehicles and high-speed flywheel energy storage systems. This course will cover advanced topics in electric drives.
Infrastructure for Vehicle Electrification – EECS 598 [FLYER]
This course covers the fundamentals of the physical and cyber infrastructures that will underpin large-scale integration of plug-in electric vehicles. PEV charger technology will be examined, with a view to establishing grid-side characteristics. V2G converter requirements will be considered. The physical power system infrastructure will be presented, beginning with an overview of power system structure and operations, through distribution system design, to consumer installations. Quality-of-supply issues and protection requirements will be addressed. The information infrastructure and regulatory framework required to support various business models for flexible PEV charging and V2G applications will be presented. Control strategies that are appropriate for large-scale PEV integration will be considered. Upon completion of the course, students should have a comprehensive knowledge of the structure, capabilities and limitations of the physical and cyber infrastructures required to support PEVs.
Advanced Energy Storage – EECS 598 [FLYER]
This course primarily focuses on introducing and comparing different energy storages, such as pumped-storage, compressed air energy storage, batteries, capacitive energy storage, fuel cells, and flywheels, with special applications to electrified vehicles and renewable energy systems where energy storage plays a crucial role. The course will focus on reviewing principles and recent progress in energy storage systems, with the goals of improving the performance and lifespan of electrified vehicles as well as integrating renewable energy (e.g., wind and solar energy) into the grid.
Computational Power Systems – EECS 598 [SYLLABUS]
The growing digitization of power systems, the rapid penetration of distributed energy resources, and the decentralization of decision-making call for new computational algorithms to support power system operations and electricity markets. This course provides an overview of computational problems in power systems and introduces a range of computational algorithms to solve them, while recognizing the trade-offs between performance, speed, and data requirements. The course is arranged in three parts. The first part overviews optimization problems in power systems, such as economic dispatch, market clearing, voltage control, and peer-to-peer markets, and how machine learning (ML) aids these problems. The second part focuses on decentralized/distributed decision-making in high-voltage and distribution grids and how agents can solve problems using algorithms like dual decomposition and ADMM. The third part is devoted to prescriptive analytics for power systems, introducing algorithms for decision-focused learning in the context of renewable power forecasting and other analytic tasks.